Abstract
The pathogenesis of diabetic erectile dysfunction (ED) includes neuropathy, but the molecular basis for neurogenic ED is incompletely understood. The RhoA/ROCK pathway has been implicated in diabetic neuropathy and in ED, but its role in diabetic neurogenic ED is not known. The aim of this study was to determine whether hydroxyl fasudil, a ROCK inhibitor, affects diabetic neuropathy-related ED. Type 1 diabetes mellitus was induced in male rats by streptozotocin (75 mg/kg, intraperitoneally). After 8 weeks, diabetic rats were administered hydroxyl fasudil, a selective ROCK inhibitor (10 mg/kg/day, intraperitoneally) or vehicle, for 4 weeks. Age-matched control, nondiabetic, rats were treated intraperitoneally for 4 weeks with saline. At week 12, after a 2 day washout, neuro-stimulated erectile function was evaluated. Major pelvic ganglia (MPG) were collected for Western blot analysis of RhoA, ROCK-1, ROCK-2, phospho (P)-AKT (Ser(473) ), and P-phosphatase and tensin homolog (P-PTEN) (Ser(380) /Thr(382/383) ). Effect of ROCK inhibitor hydroxyl fasudil on erectile function and ROCK/P-AKT/P-PTEN pathway in the MPG of diabetic rats. Erectile response was significantly (P < 0.05) reduced in diabetic rats compared with nondiabetic rats and was preserved (P < 0.05) in diabetic rats treated with hydroxyl fasudil. In diabetic rats, RhoA and ROCK-2 protein expressions in MPG were increased (P < 0.05) and remained increased in hydroxyl fasudil-treated rats. P-AKT (Ser(473) ) expression was decreased (P < 0.05), whereas P-PTEN (Ser(380) /Thr(382/383) ) expression was increased (P < 0.05) in MPG of diabetic rats compared with nondiabetic rats, and both were reversed (P < 0.05) in diabetic rats treated with hydroxyl fasudil. Improved erectile function and restored P-AKT and P-PTEN in the MPG with hydroxyl fasudil treatment suggest the role of Rho signaling via PTEN/AKT pathway in neurogenic diabetic ED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.