Abstract

A study has been made of vibrational properties in ethylene glycol (EG; H(OCH2CH2)OH) and EG monomethyl ether (EGmE; CH3(OCH2CH2)OH) in solution together with poly(ethylene oxide) (PEO; H(OCH2CH2)n,OH) at different concentrations, performed by Fourier transform infrared absorbance (FT-IR) spectroscopy. The results ae compared with previous viscometry and photon correlation spectroscopy (PCS) studies, using EG dimethyl ether (EGdE; CH3(OCH2CH2)OCH3) as solvent as well. These homologous systems differ from each other in the number of OH end groups, in particular two for EG, one for EgmE and zero for EGdE. Combining analysis of the vibrational and transport properties of EG, EGmE and EGdE in solution with PEO over a wide range of concentration made it possible to check the quality (good theta or poor) of these three different solvents and the role played by the hydrogen bond in the various solute-solvent interaction mechanisms, resulting in the well known de Gennes scaling law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call