Abstract

MXenes, an emerging family of two-dimensional (2D) metal carbides and nitrides, have been demonstrated to be effective nitrogen reduction reaction (NRR) catalysts. So far, most of the theoretical studies toward NRR are based on bare MXenes; however, the structural stabilities are questionable. In this work, we studied the NRR process on several synthesized MXenes (Ti2C, V2C, Cr2C, Zr2C, Nb2C, Mo2C, Hf2C, and Ta2C) with hydroxyl (OH) termination since the structures are preferred under NRR operating conditions as per Pourbaix stability diagrams. It is found that OH plays an essential role in tuning the NRR chemistry, as a new surface-hydroxylation mechanism. Different from the widely accepted NRR mechanism where only protons are involved in the reaction, hydrogen (H) atoms from surface hydroxyl could be captured by the intermediate and participate into the NRR, while the remaining H vacancy can subsequently be self-repaired by the protons under the applied potential. The cooperative effect of surface hydroxylation can effectively boost the NRR, while Mo2C(OH)2 stands out with the most favorable limiting potential of -0.62 V and highest selectivity. Moreover, new scaling relationships based on the H vacancy energy are established, elucidating the possibility for structure-activity tuning. This study not only elaborates the essential role of surface OH functionalization in evaluating NRR performance but also affords new insights into advance sustainable NH3 production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.