Abstract
Hydroxyfullerene (fullerol) as a novel coating for solid-phase microextraction (SPME) fiber was first prepared by a sol-gel technology. The coating procedure involving sol solution composition and conditioning process was presented. A fullerene polysiloxane surface-bonded porous coating on the fused-silica fiber surface was obtained and confirmed by IR spectra and scanning electron microscopy. The coating has stable performance at high temperature (even to 360 degrees C) and solvents (organic and inorganic) because of the properties of fullerene and the chemical binding between the coating and the fiber surface. The extraction properties of the new coatings to less volatile organic compounds, such as polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons and polar aromatic amines were investigated using headspace SPME coupled with GC-electron-capture detection and GC-flame ionization detection. In addition, compared with commercial SPME stationary phases, the new coatings showed higher sensitivity, faster velocities of mass transfer for aromatic compound, and possessed planarity molecular recognition for PCBs. Moreover, this fiber was firm, inexpensive, durable and can be prepared simply. The fiber-to-fiber reproducibility was very good.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.