Abstract
In this work, a novel graft copolymer, hydroxyethylcellulose-graft-poly(2-(dimethylamino)ethyl methacrylate) (HEC-g-PDMAEMA), used as physical coatings of the bare fused-silica capillaries, was synthesized by using ceric ammonium nitrate initiator in aqueous nitric acid solution. EOF measurement results showed that the synthesized HEC-g-PDMAEMA graft copolymer-coated capillary in this paper could suppress EOF effectively compared to the bare fused-silica capillary, and efficient separations of basic proteins were also achieved. The electrical charge of the coated capillary wall could be modulated by varying not only the pH of the running buffer, but also the grafting ratio of poly(2-(dimethylamino)ethyl methacrylate) grafts, which makes possible the analysis of basic and acidic proteins in the same capillary. The effects of poly(2-(dimethylamino)ethyl methacrylate) grafting ratio in HEC-g-PDMAEMA and buffer pH on the separation of basic proteins for capillary electrophoresis were investigated in detail. Furthermore, egg white proteins and milk powder samples were separated by the HEC-g-PDMAEMA-coated capillary. The results demonstrated that the HEC-g-PDMAEMA copolymer coatings have great potential in the field of diagnosis and proteomics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.