Abstract

During systemic inflammation, leucocytes are activated and extravasate into damaged tissue. Activation and recruitment are influenced by different mechanisms, including the interaction of leucocytes with platelets and neutrophil extracellular traps (NET) formation. Here, we investigated the molecular mechanism by which hydroxyethyl starch (HES 130/0.4) dampens systemic inflammation in vivo. Systemic inflammation was induced in C57Bl/6 wild-type mice by caecal ligation and puncture and cytokine concentrations in the blood, neutrophil recruitment, platelet-neutrophil aggregates, and NET formation were investigated in vivo. Intravascular adherent and transmigrated neutrophils were analysed by intravital microscopy (IVM) of the cremaster muscle and the kidneys. Flow chamber assays were used to investigate the different steps of the leucocyte recruitment cascade. By using flow cytometry, we demonstrated that HES 130/0.4 reduces neutrophil recruitment into the lung, liver, and kidneys during systemic inflammation (n=8 mice per group). IVM revealed a reduced number of adherent and transmigrated neutrophils in the cremaster and kidney after HES 130/0.4 administration (n=8 mice per group). Flow chamber experiments showed that HES 130/0.4 significantly reduced chemokine-induced neutrophil arrest (n=4 mice per group). Furthermore, HES 130/0.4 significantly reduced the formation of platelet-neutrophil aggregates, and NET formation during systemic inflammation (n=8 mice per group). Our findings suggest that HES 130/0.4 significantly reduces neutrophil-platelet aggregates, NET formation, chemokine-induced arrest, and transmigration of neutrophils under inflammatory conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.