Abstract

Background and ObjectiveHydroxychloroquine was widely used during the severe acute respiratory syndrome coronavirus 2 pandemic as an antiviral drug. Most previous pharmacokinetic/pharmacodynamic studies on hydroxychloroquine were conducted on healthy volunteers or patients receiving long-term therapy. There are no studies on the elimination of hydroxychloroquine after short-term treatments. Hydroxychloroquine is known to have a pro-arrhythmic effect through QT interval prolongation, but data in this setting are not conclusive. Our aims were to estimate the time needed for hydroxychloroquine concentrations (CHCQ) to drop to a safe concentration (500 ng/mL) after a short-term therapeutic cycle and to correlate the corrected QT interval with CHCQ.MethodsWe collected blood samples and electrocardiograms of patients who underwent short-term therapy with hydroxychloroquine during drug intake and after discontinuation. Hydroxychloroquine concentrations were determined by high-performance liquid chromatography–tandem mass spectrometry and analysed with a linear regression model to estimate the elimination time of the drug after its discontinuation. We conducted a multivariate analysis of the corrected QT interval correlation with CHCQ.ResultsOur data suggest that short-term hydroxychloroquine courses can generate significant CHCQ persisting above 500 ng/mL up to 16 days after discontinuation of treatment. Corrected QT interval prolongation significantly correlates with CHCQ.ConclusionsThe study confirms the long half-life of hydroxychloroquine and its effect on the corrected QT interval even after short-term courses of the drug. This can inform the clinician using hydroxychloroquine treatments that it would be safer to start or re-initiate treatments with corrected QT interval-prolonging potential 16 days after hydroxychloroquine discontinuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.