Abstract

Candida albicans is the primary etiological agent associated with candidiasis in humans. Unrestricted growth of C. albicans can progress to systemic infections in the worst situation. This study investigates the antifungal activity of Hydroxychloroquine (HCQ) and mode of action against C. albicans. HCQ inhibited the planktonic growth and yeast to hyphal form morphogenesis of C. albicans significantly at 0.5mg/ml concentration. The minimum inhibitory concentrations (MIC50) of HCQ for C. albicans adhesion and biofilm formation on the polystyrene surface was at 2mg/ml and 4mg/ml respectively. Various methods, such as scanning electron microscopy, exploration of the ergosterol biosynthesis pathway, cell cycle analysis, and assessment of S oxygen species (ROS) generation, were employed to investigate HCQ exerting its antifungal effects. HCQ was observed to reduce ergosterol levels in the cell membranes of C. albicans in a dose-dependent manner. Furthermore, HCQ treatment caused a substantial arrest of the C. albicans cell cycle at the G0/G1 phase, which impeded normal cell growth. Gene expression analysis revealed upregulation of SOD2, SOD1, and CAT1 genes after HCQ treatment, while genes like HWP1, RAS1, TEC1, and CDC 35 were downregulated. The study also assessed the in vivo efficacy of HCQ in a mice model, revealing a reduction in the pathogenicity of C. albicans after HCQ treatment. These results indicate that HCQ holds for the development of novel antifungal therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call