Abstract

The biologic attachment characteristics of hydroxyapatite (HA)-coated porous titanium and uncoated porous titanium implants were investigated. The implants were placed transcortically in the femora of adult mongrel dogs and evaluated after periods of three, six, and 12 weeks. The HA coating was applied using a modified plasma spray process to samples with pore volume and pore size of the porous coating expanded to equal the pore morphology of uncoated porous specimens. Mechanical push-out testing revealed that the bone-porous material interface shear strength increased with time in situ for both the uncoated and HA-coated implants. The use of the HA coating on porous titanium, however, did not significantly increase attachment strength. Histologic and microradiographic sections yielded similar qualitative results in the amount of bone grown into each system. After three weeks, both systems displayed primarily woven bone occupying approximately 50% of the available porous structure. Six and 12 weeks postimplantation, each system displayed more extensive bone ingrowth, organization, and mineralization, with only limited areas of immature bone. Histologically, differences were noted at the ingrown bone-porous material interface between the two implant types. The HA coating supported mineralization directly onto its surface, and a thin osseous layer was found lining all HA-coated surfaces. An extremely thin fibrous layer was observed separating the uncoated titanium particle surface from ingrown bone. There was no extensive direct apposition or lining of the ingrown bone to the uncoated porous titanium particle surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.