Abstract

Hydroxyapatite (HAp) is a bioceramic applied in the biomedical areas, such as matrices for drug release control. Chitosan (CTS), a natural polymer, is another material has been widely investigated for its potential use in the drug delivery systems. In this study, the composites of HAp-CTS are produced in order to investigate their drug loading and release studies. First of all, HAp-CTS composites are produced in the presence of simulated body fluid (SBF). Analysis confirmed the structure of HAp-CTS composites. Secondly, composites are encapsulated with 5-Fluorouracil (5-FU). The weight ratio of CTS is varied to realize its effect on drug loading of 5-Fluorouracil, a cancer drug, for the ratios of 1:1, 1:2 and 1:4 of HAp-CTS. The weight ratio giving the greatest drug load efficiency is selected for the last step of the study. Crosslinking agent, glutaraldehyde, are changed from 0 to 5% on the selected sample, then, drug loading is examined again in various environment owing different pH. Furthermore, drug release studies are conducted. To understand the structure and morphology of the samples, XRD, FTIR, SEM and Uv-Spectrum are applied. It is observed that weight ratio of polymer and crosslinking agent can be manipulated to adjust drug loading. Release kinetics are shown the Fickian diffusion. This new produced material can be applicable for drug delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.