Abstract

Osteosarcoma is the most primary type of bone tumor occurring in the pediatric and adolescent age groups. In order to obtain the most appropriate prognosis, both tumor recurrence inhibition and bone repair promotion are required. In this study, a ternary nanoscale biomaterial/antitumor drug complex including hydroxyapatite (HA), bovine serum albumin (BSA) and paclitaxel (PTX) is prepared for post-surgical cancer treatment of osteosarcoma in situ. The HA-BSA-PTX nanoparticles, about 55 nm in diameter with drug loading efficiency (32.17 wt%), have sustained release properties of PTX and calcium ions (Ca2+ ) and low cytotoxicity to human fetal osteoblastic (hFOB 1.19) cells in vitro. However, for osteosarcoma (143B) cells, the proliferation, migration, and invasion ability are significantly inhibited. The in situ osteosarcoma model studies demonstrate that HA-BSA-PTX nanoparticles have significant anticancer effects and can effectively inhibit tumor metastasis. Meanwhile, the detection of alkaline phosphatase activity, calcium deposition, and reverse transcription-polymerase chain reaction proves that the HA-BSA-PTX nanoparticles can promote the osteogenic differentiation. Therefore, the HA-BSA-PTX nanodrug delivery system combined with sustained drug release, antitumor, and osteogenesis effects is a promising agent for osteosarcoma adjuvant therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call