Abstract

In living organisms the biological hydroxyapatite is in constant contact with body fluids, such as blood serum and saliva. Thus, dissolution, solubility and precipitation take place as part of the interaction of this material with biological fluids in tissues. In this work we have obtained the solubility constant for the system formed from aqueous solutions in equilibrium with hydroxyapatite and thus indirectly obtained the composition of the modified hydroxyapatite surface. In order to check the effects of this equilibrium and of the modification that the surface of hydroxyapatite suffers in aqueous solutions, we cultured pre-osteoblasts onto hydroxyapatite discs before and after equilibrium. The results revealed key steps of the mechanism for the bioactivity of hydroxyapatite, which are the solubilization of hydroxyapatite and the equilibrium that is formed on the surface. These processes modify the hydroxyapatite surface, whose composition is changed to a new calcium phosphate compound with the chemical formula of CaHPO 4. A clear description of the transformations that occur on the surface of hydroxyapatite and of the interplay between these transformations and cell activity are two fundamental aspects of processes in which hydroxyapatite takes part, such as bone substitution, bone remodeling, osteoporosis and caries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.