Abstract

Herein we report the preparation, characterization and catalytic use of hydroxyapatite-supported palladium(0) nanoclusters in the hydrolysis of ammonia-borane. Palladium(0) nanoclusters were formed in situ from the reduction of palladium(II) ion exchanged hydroxyapatite during the hydrolysis of ammonia-borane and supported on hydroxyapatite. The hydroxyapatite-supported palladium(0) nanoclusters are stable enough to be isolated as solid materials and characterized by using a combination of advanced analytical techniques. They are isolable, redispersible and reusable as an active catalyst in the hydrolysis of ammonia-borane even at low concentration and temperature. They provide a maximum hydrogen generation rate of ∼1425 mL H 2 min −1 (g Pd) −1 and 12300 turnovers in the hydrolysis of ammonia-borane at 25 ± 0.1 °C before deactivation. The work reported here also includes the full experimental details for the collection of a wealth of kinetic data to determine the activation energy ( E a = 54.8 ± 2.2 kJ/mol) and the effect of catalyst concentration on the rate for the catalytic hydrolysis of ammonia-borane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call