Abstract

Bone-like hydroxyapatite (HAp) has been prepared by biomimetic synthesis using simulated body fluid (SBF), mimicking inorganic ion concentrations in human plasma, or 1.5SBF that has 1.5-times higher ion concentrations than SBF. In this study, the controllable preparations of HAp particles from 1.5SBF with different pH values were examined. The particles obtained as precipitates from 1.5SBF showed different morphologies and crystallinities depending on the pH of 1.5SBF. Micro-sized particles at pH 7.4 of 1.5SBF had a higher Ca/P ratio and crystallinity as compared with nano-sized particles at pH 8.0 and pH 8.4 of 1.5SBF. However, a mixture of micro-sized and nano-sized particles was obtained from pH 7.7 of 1.5SBF. When Ca2+ concentrations in 1.5SBF during mineralization were monitored, the concentration at pH 7.4 drastically decreased from 12 to 24 h. At higher pH, such as 8.0 and 8.4, the Ca2+ concentrations decreased during pH adjustment and slightly decreased even after 48 h. In this investigation at pH 7.7, the Ca2+ concentrations were higher than pH 8.0 and 8.4.Additionally, cytotoxicity of the obtained precipitates to mesenchymal stem cells was lower than that of synthetic HAp. Controllable preparation HAp particles from SBF has potential applications in the construction of building components of cell scaffolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.