Abstract

Hydroxyapatite (HAp) has been synthesized by different techniques, and sonochemical methods have shown to be useful in the HAp nanopartcicles production for biomedical applications such as bone graft substitute. In addition, experimental design is an appropriate tool for planning and evaluating a study to meet specified objectives. Then, this work aimed to synthesize HAp nanosized powders by a sonochemical method and assess the processing parameters via experimental design, in order to obtain dense samples. HAp nanopowders were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope/Field Emission Gun (SEM/FEG). For densification analysis, HAp samples were processed with different parameters, such as: compaction pressure (200 or 400 MPa), sintering temperature (900 or 1100°C), sintering heating rate (2 or 20 °C/min), and sintering time (2 or 4 hours). The samples were analyzed by SEM/FEG, whereas the linear shrinkage and density were considered the response variables for the experimental design. The results indicated that the sonochemical method successfully produced HAp nanoparticles with sphere-like morphology. Further, the experimental design showed that sintering temperature was the variable that most influenced the densification of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.