Abstract

In this study, the mesoporous silica/hydroxyapatite (MCM/HA) was successfully synthesized by a simple one-step method as a controlled drug delivery system. The characterization of mesoporous materials was carried out by X-ray diffraction (XRD), transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (XRF), N2 adsorption/desorption analysis, and ultraviolet spectroscopy. Furthermore, ibuprofen (IBU) drug storage capacities and release rate were studied at in vitro conditions. The XRD and HRTEM results showed the formation of hydroxyapatite nanocrystals into mesoporous silica channels. The BET results indicated that the formation of hydroxyapatite into meso-channels leads to decrease in MCM-41 surface area and pore volume. In addition, the ibuprofen loading and release results showed that adsorption and release behavior of ibuprofen were extremely depended on the interaction of the MCM-41 surface groups and ibuprofen and carrier structural properties in the presence of hydroxyapatite crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call