Abstract

Poly (vinyl alcohol) (PVA) hydrogels are considered promising artificial articular cartilage. However, the weak attachment between PVA hydrogels and subchondral bone limit its application in the biomedical field. In this article, we present a new method to improve the mineralization of PVA hydrogels, and fabricate PVA hydrogels with continuously graded hydroxyapatite coating. The surface of the hydrogels was modified by dopamine self-polymerization and alendronate conjugation subsequently. Based on these, we used simulated body fluids to mineralize the hydrogels to mimic calcified cartilage zone. The modified surface of the PVA hydrogels showed excellent mineralization ability with continuously graded hydroxyapatite (HA). As the main component of human bones, HA can be chemically bonded body tissue on the interface, showing great biological activity. With the content of HA increasing, the cell adhesion ability of the hydrogels was enhanced, which helped the hydrogels integrate tightly with subchondral bone. These results demonstrate that the modified hydrogels could be promising substitutes for articular cartilage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.