Abstract
For many years, hydroxyapatite (HA) has been used as a bioactive endosseous dental implant coating to improve osseointegration. As such, the coating needs to be of high purity, adequate thickness, crystalline, and of a certain roughness in order to stimulate rapid fixation and form a strong bond between the host bone and the implant. There are a number of ways of preparing the HA coating, resulting in various coating properties. Herein, we report the preparation of the HA coating using a direct electrochemical method without the need for subsequent heat treatment. The aim of this study was to investigate the physicochemical properties of the HP coating, deposited on titanium implants by a modified electrochemical method. The coating was characterized in terms of surface chemical composition, structure, morphology, coating thickness and roughness. The coating was found to be composed of homogenous HA with Ca/P and Ca/O ratios of 1.62 and 0.35, respectively. No other forms of calcium phosphate were detected. The degree of crystallinity of HA was 92.4%. The surface roughness was moderate (Sa = 1.04 μm) with the coating thickness of 2-3 μm. The scanning electron microscopy (SEM) analysis revealed a uniform, integrated layer of rod-like HA crystals with the longitudinal axes parallel to the implant surface. The coating reported herein was found to have potentially favorable chemical and physical characteristics fostering osseointegration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.