Abstract

Hydroxyapatite describes both the natural mineral phase of bone as well as the widely used calcium-phosphate implant substitute. Given that hydroxyapatite is a major component of the in vivo surface with which osteoblasts interact, it is surprising that most studies examining the regulation of osteoblast growth and differentiation utilize plastic surfaces. Here we demonstrate that the phenotype of mouse MC3T3-E1 osteoblasts is significantly altered on hydroxyapatite compared with plastic surfaces. Specifically, alkaline phosphatase activity and messenger RNA levels, markers of early stages of osteoblast differentiation, are increased in osteoblasts cultured on hydroxyapatite. The precocious appearance of alkaline phosphatase activity on the hydroxyapatite surface suggests that osteoblast differentiation is activated earlier compared with plastic surfaces. Osteocalcin expression, a marker of late-stage differentiation, is also increased on hydroxyapatite and further demonstrates enhanced differentiation. Cell counts indicate that fewer osteoblasts are present on hydroxyapatite versus plastic surfaces 24 h after plating. Measurement of osteoblast attachment, apoptosis, and necrosis indicated no differences between surfaces. In contrast, the number of bromodeoxyuridine-incorporating cells was significantly decreased on hydroxyapatite compared with plastic surfaces. Taken together, our findings indicate that hydroxyapatite enhances osteoblast differentiation while also suppressing growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.