Abstract
The reaction of uranyl nitrate with 1,3-bis(salicylideneamino)-2-propanol (H(3)L1) and 1,3-bis(3,5-di-tert-butylsalicylideneamino)-2-propanol (H(3)L2) in the presence of triethylamine (Et(3)N) yielded hydroxy- and alkoxy-bridged dinuclear complexes; [(UO(2))(2)(L1)(OH)(MeOH)(2)].(MeOH)(2) (.(MeOH)(2)) and [(UO(2))(2)(L2)(OH)(MeOH)(2)].(MeOH)(2) (.(MeOH)(2)). The crystal structures of .(DMF)(2) and .(DMF)(2) exhibit an unsymmetrical central U(2)O(2) core involving bridging alkoxy- and hydroxy-oxygen atoms. The geometry around the uranium center in .(DMF)(2) and .(DMF)(2) is that of a distorted pentagonal bipyramid with the solvent molecule occupying the fifth coordination site. The flexible nature of the ligand backbone is more pronounced in .(DMF)(2) compared to .(DMF)(2), yielding two molecules per unit cell in different conformations. Under similar reaction conditions, using ethylenediamine as a base, the respective Salen-based uranyl compounds, [UO(2)(Salen)(MeOH)] () and [UO(2)(Bu(t)(2)-Salen)(MeOH)] () are obtained due to transamination of the ligand backbone. Complexes .(MeOH)(2) and .(MeOH)(2) when reacted with an excess of ethylenediamine failed to yield the respective Salen-based complexes, and , respectively. The new compounds have been characterized using solution (NMR and UV-Vis) and solid-state (IR, X-ray crystallography) techniques. Hydrolysis of .(MeOH)(2) and .(MeOH)(2) in the pH range 1-14 was studied using UV-Vis spectroscopy and compared with the hydrolysis of and [UO(2)(Salophen)(MeOH)] (). A two-phase extraction study suggests quantitative removal of uranyl ions from the aqueous phase at higher pH conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.