Abstract
Hydroxide ion hydration was studied in aqueous solutions of selected alkali metal hydroxides by means of Fourier transform infrared (FTIR) spectroscopy of HDO isotopically diluted in H2O. The quantitative difference spectra procedure was applied for the first time to investigate such systems. It allowed removal of bulk water contribution and separation of the spectra of solute-affected HDO. The obtained spectral data were confronted with ab initio calculated structures of small gas-phase and polarizable continuum solvation model (PCM) solvated aqueous clusters, OH-(H2O)n, n = 1-7, to establish the structural and energetic states of hydration spheres of the hydrated hydroxide anion. This was achieved by comparison of the calculated optimal geometries with the interatomic distances derived from HDO band positions. The energetic state of water in OH- hydration shells, as revealed by solute-affected HDO spectra, is similar to that of an isoelectronic F- anion. No evidence was found for the existence of stable hydroxide dimer, H3O2-, in an aqueous solution. Spectral data do confirm, however, existence of a weak interaction with a single water molecule at the hydrogen site of OH-.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.