Abstract

MnFe2O4 nanoparticles of various particle sizes were prepared by co-precipitation, in which different hydroxide concentrations were employed to control particle growth. X-ray diffraction and scanning electron microscopy were used to investigate the nanoparticle structure and morphology (shape and size). The particle size increased with increasing hydroxide concentration. The magnetization and coercivity field were measured by vibrating sample magnetometry. Changes in magnetic behavior were observed in the magnetic hysteresis loop curves of nanoparticles with increasing hydroxide concentration. In the absence of hydroxide, nanoparticles exhibited paramagnetic behavior. Increasing the hydroxide concentration caused a gradual conversion to ferrimagnetic behavior. An increased Neel temperature was observed with increasing hydroxide concentration, and the saturation magnetization exhibited a sharp decrease. Nonuniform hysteresis was observed in the magnetization curve for the sample prepared from hydroxide and ammonium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.