Abstract

Thermochemical ester bond cleavage in the phospholipid phosphatidylcholine (PC) was evaluated at reaction temperatures between ca. 20–60 °C using a series of lithium and zinc halides: lithium chloride, lithium bromide, lithium iodide, zinc chloride, zinc bromide, and zinc iodide. Hydroxides, produced via reaction between lithium or zinc halides and potassium hydroxide (KOH), cleaved selective carbonyl and phosphonyl ester bonds in PC. This reaction was studied at 21, 30, 50 and 60 °C for periods of 2 and 4 hours. Attenuated total reflectance FTIR (ATR-FTIR) spectral analysis of neat (unreacted) and reacted PC showed qualitative and quantitative evidence of carbonyl and phosphonyl ester cleavage as indicated by the appearance and increase in the asymmetric carboxylate anion stretch (∼1577 cm-1) and symmetric phosphonyl dianion stretch (∼1010 cm-1) peaks, respectively. Ester cleavage in PC was demonstrated under extremely mild conditions for lithium hydroxides. In addition, the hydrolysis was found to be selective, leaving the zwitterionic phosphorylcholine group intact. Reaction time and temperature had little to no effect in promoting hydroxide attack on the ester bonds found in PC. Finally, the results of this study show that a non-enzymatic cleavage reaction methodology based on lithium hydroxide can be used for selective ester hydrolysis under extremely mild conditions. This ester hydrolysis method allows for a fast, low temperature, and selective cleavage using a chemical catalyst.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.