Abstract
The siderophore-producing ability of nickel-resistant Streptomyces acidiscabies E13 and the role of the elicited siderophores in promoting plant growth under iron and nickel stress are described. Siderophore assays indicated that S. acidiscabies E13 can produce siderophores. Electrospray ionization mass spectrometry (ESI-MS) revealed that the bacterium simultaneously produces 3 different hydroxamate siderophores. ESI-MS showed that in addition to iron, all 3 siderophores can bind nickel. In vitro plant growth tests were conducted with cowpea (Vigna unguiculata) in the presence and absence of the elicited siderophores. Culture filtrates containing hydroxamate siderophores significantly increased cowpea height and biomass, irrespective of the iron status of the plants, under nickel stress. The presence of reduced iron was found to be high in siderophore-containing treatments in the presence of nickel. Measurements of iron and nickel contents of cowpea roots and shoots indicated that the siderophore-mediated plant growth promotion reported here involves the simultaneous inhibition of nickel uptake and solubilization and supply of iron to plants. We conclude that hydroxamate siderophores contained in culture filtrates of S. acidiscabies E13 promoted cowpea growth under nickel contamination by binding iron and nickel, thus playing a dual role of sourcing iron for plant use and protecting against nickel toxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.