Abstract
This report describes research leading to the development of new catalytic materials based on hydrous metal oxide (HMO) ion exchangers. Present in this part, the second of two parts, are results of catalyst-related research and application of the materials to catalytic reactions for direct coal liquefaction processes. HMO materials are inorganic ion exchangers, derived from the alkoxides of Ti, Zr, Nb, or Ta, that exhibit a number of properties applicable to the preparation of catalysts. Research on the catalytic properties of HMO's has focused on the hydrous titanium oxide (HTO) system. However, exploratory coal liquefaction experiments with hydrous niobium oxides (HNO's) and hydrous zirconium oxides (HZO's) have demonstrated that these HMO's also exhibit potential as coal liquefaction catalysts. Studies performed during the course of this research include (1) preliminary coal liquefaction and hydrotreating tests, (2) tests of hydrogenation, hydrodesulfurization, hydrodeoxygenation and hydrodenitrogenation activity using model compounds, (3) development of catalyst pretreatment and activation procedures, (4) modification of HTO supports with silicon, (5) preparation and testing of thin film HTO catalysts, (6) synthesis, characterization and evaluation of base and noble metal catalyst deactivation tests, and (9) exploratory tests of applications other than direct liquefaction. The versatility of the HTO system formore » synthesis of catalysts allows great potential for further improvements in activity and selectivity as well as tailoring of catalysts for specific processes. Research is continuing in these areas. 54 refs., 63 figs., 25 tabs.« less
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.