Abstract

A ferrate functionalized graphene-based composite is prepared by growth of hydrous ferric oxide (FeOOH) on the polyethylene glycol (PEG) modified graphene oxide (GO) sheets. The obtained GO–PEG–FeOOH composite is characterized by ATR-FTIR, TEM, AFM, XPS and ICP-MS. The PEGylation significantly changes the surface property of the bare graphene oxide, which not only generates a nano-bio-interface for protein interaction but also reduces the non-specific adsorption of proteins. The PEGylation and growth of FeOOH nanorods on GO sheets obviously enhanced the selectivity toward the adsorption of albumin through strong hydrogen bonding interaction, exhibiting an ultra-high adsorption capacity of 1377.4mgg−1 for bovine serum albumin (BSA). It is obviously higher than those achieved by any hitherto reported graphene based materials and other carbon nanomaterials. Albumin retained by the composite could be effectively recovered with a 4.0mM B–R buffer through the affinity of boronic acid toward protein, giving rise to a recovery of 70%. Circular dichroism (CD) spectra indicate no conformational change for BSA during the process of adsorption/desorption. The practical applicability of the GO nanocomposite is further demonstrated by the selective adsorption/isolation of albumin from complex biological samples matrixes, e.g., human whole blood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.