Abstract
Abstract Hydrothermally cured or autoclaved cement-based building products have provided many challenges to researchers, manufacturers, and users since their inception nearly 100 years ago. The advantages, including the development of high strength within a few hours and a reduction of drying shrinkage, of the hydrothermal curing process have resulted in a variety of building products; inevitably, the technology of their production has undergone many stages of refinement. With the advent of nonconventional starting materials for the production of modern cements, and the push to utilize renewable resources to form blended cements, the chemical and physical make-up of hydrothermally cured building materials have changed considerably in recent years and will continue to change. It is, therefore, important to understand the chemical reactions taking place in an autoclave, and the consequent phase developments, if building materials produced by this process continue to be successful in the long term. A wide range of analytical techniques exists for characterizing the phase development in cement-based materials. The purpose of this paper is to illustrate the strength of thermal methods, especially when used in combination with other analytical techniques, in the understanding of hydrothermal reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.