Abstract
A facile, green and easily-scalable method of synthesizing stable and effective nano zero-valent iron (nZVI)‑carbon composites for peroxymonosulfate (PMS) activation was highly desirable for in-situ groundwater remediation. This study developed a two-step hydrothermally assisted carbothermal reduction method to prepare nZVI-encapsulated carbon composite (Fe@C) using rice straw and ferric nitrate as precursors. The hydrothermal reactions were conducive to iron loading, and carbothermal temperature was crucial for the aromatization and graphitization of hydrothermal carbonaceous products, the reductive transformation of iron oxides into nZVI and the development of porous structure in composites. At carbothermal temperature of 800 °C following hydrothermal reactions, the stable Fe@C800 with nZVI encapsulated in the spherical carbon shell was obtained and exhibited the best catalytic performance for PMS activation and the degradation of monochlorobenzene (MCB) in a wide range of pH values (3−11) with removal efficiency after 120 min reaction and first-order kinetic rate constant (k1) of 98.7% and 0.087 min−1 respectively under the optimum conditions of 10 mM PMS and 0.2 g·L−1 Fe@C800. The inhibiting effects of common co-existed anions (i.e., Cl−, HCO3− and H2PO4−) and humic acid in groundwater on the removal of MCB in Fe@C800/PMS system was also investigated. Both OH-dominated radical processes and nonradical pathways involving 1O2 and surface electron transfers were accounted for PMS activation and MCB removal. The inner nZVI was protected by the carbon shell, endowing Fe@C800 with high reactivity and good reusability. Additionally, 81.2% and 73.5% of MCB removal rates were achieved in tap water and actual contaminated groundwater respectively. This study not only provided a novel strategy to synthesize highly effective and stable nZVI‑carbon composites using the agricultural biomass waste for PMS induced oxidation of organic contaminants in groundwater, but also enhanced the understanding on the activation mechanism of iron‑carbon based catalysts towards PMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.