Abstract

The preparation of highly active supported noble metal catalysts with a low noble metal loading has always been the ultimate goal of researchers working on catalysis. Hydrothermally treated Pt/Al2O3 (Pt/Al2O3-H) exhibits better catalytic activity than that (Pt/Al2O3-C) treated via the conventional calcination approach. At the high space velocity of 100,000 mL/(g∙hr), the temperature that correspond to 50% toluene conversion (T50) of Pt/Al2O3-H is 115°C lower than that of Pt/Al2O3-C, and the turnover frequency (TOF) value can reach 0.0756 sec−1. The mechanism by which the hydrothermal approach enhances Pt/Al2O3 activity has been investigated. The structure associated with the high catalytic activity of Pt nanoparticles (NPs) can be retained via hydrothermal treatment. Furthermore, the support is transformed to AlO(OH) with numerous surface hydroxyl groups, which in turn can facilitate the adsorption of toluene. And the synergistic effects of Pt NPs and AlO(OH) increases the contents of Pt in oxidation state and active oxygen, which are beneficial for toluene oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.