Abstract

In our research described here nanocomposites containing a newly synthesized methacrylate polymer, poly 2-(4-fluorophenyl)-2-oxoethyl-2-methylprop-2-enoate (PFPAMA) and ZnO nanoparticles in various mass ratios (1, 3 and 5 w %) were synthesized using the hydrothermal method. The synthesized nanocomposites were characterized by Fourier-transform infrared spectroscopy (FTIR), Hydrogen-1 nuclear magnetic resonance (1H-NMR) and X-ray diffraction (XRD) techniques. Both real and imaginary components of the complex dielectric permittivity of pure PFPAMA and the three different PFPAMA/ZnO nanocomposites were measured as a function of frequency. The dielectric study revealed that the ZnO nanoparticles improved the dielectric properties of pure PFPAMA. The variation of electrical conductivity, with frequency showed that the σ value increased linearly with increasing ZnO content. The frequency dependence of the conductivity suggested that the conduction occurs via a barrier hopping process. The obtained results suggest that the ZnO-doped, poly-2-(4-fluorophenyl)-2-oxoethyl-2-methylprop-2-enoate nanocomposites can be used as a dielectric material in dielectric device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.