Abstract
In this paper, WO3·H2O with different nanostructures from 0D to 3D were successfully synthesized via a simple yet cost-effective hydrothermal method with the assistance of surfactants. The structures and morphologies of products were investigated by XRD and SEM. Besides, we systematically explained the evolution process and formation mechanisms of different WO3·H2O morphologies. It is noted that both the kinds and amounts of surfactants strongly affect the formation of WO3·H2O crystals, as reflected in the tailoring of WO3·H2O morphologies. Furthermore, the gas sensing performance of the as-prepared samples towards methanol was also investigated. 3D flower-like hierarchical architecture displayed outstanding response to target gas among the four samples. We hoped our results could be of great benefit to further investigations of synthesizing different dimensional WO3·H2O nanostructures and their gas sensing applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.