Abstract

AbstractIn this study, TiO2 nanofibers were fabricated via the electrospinning method followed by air annealing. Then, Ti‐requirement in the conventional hydrothermal synthesis of BaTiO3 stoichiometry was supplied by using these nanofibers. The microstructural and compositional properties of BaTiO3 nanoparticles were studied using SEM, TEM, XRD, XPS, and Raman spectroscopy. The structural analysis showed that the cubic symmetry was the dominant one in the BaTiO3 nanoparticles, whereas Raman spectroscopy indicated the coexistence of cubic symmetry with the tetragonal polymorph. The nanoparticles displayed higher photocatalytic reactivity under UV‐A light compared to visible irradiation during decomposition of methylene blue dye and reached 24.2% and 18.8% degradation, respectively, after 1 hour. Furthermore, the dielectric properties were investigated using sintered compacts of these nanoparticles. Among the employed temperatures for sintering, the highest relative density (90%) and dielectric constant (2165 at 1 MHz) were obtained at 1250°C and 5 hours. This study revealed that the electrospun TiO2 nanofiber precursor can successfully be used for the production of nanoscale barium titanate particles suitable for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.