Abstract
AbstractThe hierarchical hollow NiCo2O4/CoMoO4 hybrid composite was directly grown on Ni foam (NF) under hydrothermal conditions at 110–140 °C for different growth times. This robust hollow structure benefits from a weakly alkaline environment provided by tetramethyl ammonium hydroxide and can provide a large surface area, low resistance, and many active sites to facilitate electrolyte ion transport and fast redox reactions. The as‐prepared NiCo2O4/CoMoO4 hybrid with synergetic effects shows improved electrochemical properties with an excellent capacitance (2080 F/g at 1 A/g) and long‐term cycling reliability (70 % retention undergoing 3000 cycles at 10 A/g). An assembled hybrid supercapacitor based on the as‐prepared NiCo2O4/CoMoO4 hybrid electrode delivers a high energy density of 35.63 Wh/kg at a power density of 845 W/kg and a long‐term cycling life (capacitance retention of 71.4 % over 9000 cycles). Thus, the as‐prepared NiCo2O4/CoMoO4 nanocomposite has a definite advantage for supercapacitor electrode materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.