Abstract
A hydrothermal method for preparation of nano-size zirconia has been studied to optimize the effective parameters (precursor concentration, temperature and time) using response surface methodology (RSM). The synthesized zirconia samples were characterized through X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses to identify mean nanoparticles size of the zirconia powders and molar fraction of monoclinic and tetragonal (or cubic) crystalline phases. Since, tetragonal and cubic phases are more valuable for the technological applications than the monoclinic phase, improving synthesis of tetragonal and cubic crystalline phases has been considered. The analysis of the primary experimental data through RSM method for optimization of the parameters showed that a precursor concentration of about 0.0092 mol L –1 , a reaction temperature of 150 °C and a reaction time of 83.18 h are the optimum process conditions which give a mean zirconia nanoparticles size of ~23 nm and a high molar fraction of tetragonal (or cubic) crystalline phases (~70%) simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.