Abstract
Copper microparticles (2-5 um) encapsulated in carbonaceous shell polyhedral composites were mildly prepared via a one-pot hydrothermal process using copper nitrate, glucose, and sodium citrate at 150 degrees C, in which the glucose was found to play reducer and graphite source roles during the formation of these core-shell-like composites. Thermal stability results indicated that their weights remain almost unchanged below 240 degrees C in ambient atmosphere. It is interesting that the copper microparticles could be partially released out and translated into monodisperse Cu nanoparticles around the initial composites under the convergent electron beams in a transmission electron microscope (TEM). This phenomenon is an appealing discovery, which might endow the Cu@C composite with new functions; for example, it might be applied as a sensitive detector for the leakage of electron beams or other substances for the sake of being a safeguard. In addition, the corresponding hollow carbonaceous polyhedra were also obtained after the acid treatment, which might be used as a template to fabricate other kinds of polyhedra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.