Abstract
In this study, heterostructured g-C3N4/Ag-TiO2 nanocomposites were successfully fabricated using an easily accessible hydrothermal route. Various analytical tools were employed to investigate the surface morphology, crystal structure, specific surface area, and optical properties of as-synthesized samples. XRD and TEM characterization results provided evidence of the successful fabrication of the ternary g-C3N4/Ag-TiO2 heterostructured nanocomposite. The heterostructured g-C3N4/Ag-TiO2 nanocomposite exhibited the best degradation efficiency of 98.04% against rhodamine B (RhB) within 180 min under visible LED light irradiation. The g-C3N4/Ag-TiO2 nanocomposite exhibited an apparent reaction rate constant 13.16, 4.7, and 1.33 times higher than that of TiO2, Ag-TiO2, and g-C3N4, respectively. The g-C3N4/Ag-TiO2 ternary composite demonstrated higher photocatalytic activity than pristine TiO2 and binary Ag-TiO2 photocatalysts for the degradation of RhB under visible LED light irradiation. The improved photocatalytic performance of the g-C3N4/Ag-TiO2 nanocomposite can be attributed to the formation of an excellent heterostructure between TiO2 and g-C3N4 as well as the incorporation of Ag nanoparticles, which promoted efficient charge carrier separation and transfer and suppressed the rate of recombination. Therefore, this study presents the development of heterostructured g-C3N4/Ag-TiO2 nanocomposites that exhibit excellent photocatalytic performance for the efficient degradation of harmful organic pollutants in wastewater, making them promising candidates for environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.