Abstract

In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the Ļ€-Ļ€ attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the Ļ€-Ļ€ stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call