Abstract
This paper describes a facile, economical and environment-friendly hydrothermal method of fabricating Fe3O4 and α-Fe2O3 nanoparticles at 180 °C for 12 h, respectively. The as-obtained products were characterized in detail. X-ray powder diffraction and transmission electron microscopy were used to investigate the products’ properties of crystal form, size, and morphology. The results showed the Fe3O4 and α-Fe2O3 nanocrystals’ diameter were about 5 and 20 nm, respectively. Moreover, the electrochemical performances of the Fe3O4 and α-Fe2O3 nanoparticles as anode materials for Li-ion batteries were also evaluated. The first-discharge capacities of Fe3O4 and α-Fe2O3 nanocrystals were 1,380 and 1,280 mAh g−1, and stabled about 96 and 75 mAh g−1 after 20 cycles, respectively. These materials offer substantial promise for developing alternative, high capacity negative electrodes for safer lithium batteries as energy storage and conversion materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.