Abstract

Manganese ferrites nanoparticles (NPs) substituted with both Co2+ and Zn2+ simultaneously (CoyZnyMn1-2yFe2O4 NPs for y=0.0 to 0.5), have been produced by hydrothermal approach. The substitution with both Co2+ and Zn2+ ions on the structure, spectroscopic and magneto-optical properties of nanocrystalline MnFe2O4 spinel ferrites have been analyzed in detail. The formation of spinel phase and structural changes induced by Co2+ and Zn2+ ions substitutions were confirmed by X-ray diffraction studies. Rietveld refinement revealed the cubic spinel phase for all products (minor amount of Fe2O3). Lattice constant and crystallite size were found to decrease from 8.478 to 8.370Å and from 14.68 to 8.22nm, respectively with increasing substitution of Co2+ and Zn2+ ions. HR-SEM and HR-TEM micrographs revealed the high homogeneity cubic structure of samples. The hyperfine magnetic field values for all products after Mn2+, Zn2+ and Co2+ ions substitution were determined by Mössbauer analysis. The estimated optical Eg (Energy band gap) values are in the range of 1.41–1.54eV for the samples. The smaller Eg values are mainly attributed to greater particle size and decreasing quantum confinement effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.