Abstract
In2−xCoxS3 (x = 0 to 0.1) micropompons (diameters ∼3–4 μm) consisting of ∼10–15-nm-thick randomly self-assembled nanoflakes were synthesized hydrothermally. X-ray study indicated a steady variation of lattice parameter ratio up to 5% Co. Detailed investigations of the Co incorporation in In2S3 were carried out by optical absorbance, room temperature photoluminescence (PL), and electron paramagnetic resonance (EPR) studies. Significant blue shift in the absorbance spectra was noticed due to the crystal-field splitting of Co2+ ions in the host lattice structure. Unlike the visible emission found in undoped In2S3, PL spectra of the Co-doped samples were recognized by a strong ultraviolet emission peak at ∼335 nm, introduced by the t2g level of Co2+ ions, with maximum intensity for 5% Co. Room-temperature and low-temperature EPR spectra revealed octet paramagnetic bands up to 5% Co beyond which a single resonance band appeared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.