Abstract

Developing the triethylamine sensor with excellent sensitivity and selectivity is important for detecting the triethylamine concentration change in the environment. In this work, flower-like CeO2-SnO2 composites with different contents of CeO2 were successfully synthesized by the one-step hydrothermal reaction. Some characterization methods were used to research the morphology and structure of the samples. Gas-sensing performance of the CeO2-SnO2 gas sensor was also studied and the results show that the flower-like CeO2-SnO2 composite showed an enhanced gas-sensing property to triethylamine compared to that of pure SnO2. The response value of the 5 wt.% CeO2 content composite based sensor to 200 ppm triethylamine under the optimum working temperature (310 °C) is approximately 3.8 times higher than pure SnO2. In addition, CeO2-SnO2 composite is also significantly more selective for triethylamine than pure SnO2 and has better linearity over a wide range of triethylamine concentrations. The improved gas-sensing mechanism of the composites toward triethylamine was also carefully discussed.

Highlights

  • Triethylamine (TEA) is a colorless, transparent oily liquid with strong ammonia odor and was widely used as an organic solvent, raw material, polymerization inhibitor, preservative, catalyst and synthetic dye [1,2]

  • The experimental results indicate that the TEA gas sensing performance of the CeO2-SnO2 composites based sensors are significantly improved by the modification of a small amount of CeO2 compared with pure SnO2, especially in terms of sensitivity and selectivity

  • In a typical process of synthesize CeO2-SnO2 composites, 3.6 g NSnanComl2a·t2erHia2lsO20a1n8,d8,1x1F.7O6RgPENERa3RCE6VHIE5WO7·2H2O were dissolved into 40 mL of distilled water with st8irorifn1g1

Read more

Summary

Introduction

Triethylamine (TEA) is a colorless, transparent oily liquid with strong ammonia odor and was widely used as an organic solvent, raw material, polymerization inhibitor, preservative, catalyst and synthetic dye [1,2]. We know that the traditional SnO2 based gas sensors has some obvious problems of low gas response, high optimum working temperature, poor selectivity and stability [25,26,27]. Researchers use another MOS doped SnO2 to improve its gas sensitivity. The experimental results indicate that the TEA gas sensing performance of the CeO2-SnO2 composites based sensors are significantly improved by the modification of a small amount of CeO2 compared with pure SnO2, especially in terms of sensitivity and selectivity.

Sample Characterization
Sample Preparation
Characterizations
Gas Sensor Fabrication and Analysis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.