Abstract

The present work report, the synthesis and characterization of the CuIn0.5Ga0.5Se2 system (abbreviated CIGS), by the implementation of a hydrothermal route, in order to obtain a solid with appropriate properties in terms of surface, morphological and texture properties for potential applications in the design of photovoltaic cells. The synthesis was carried out using the corresponding stoichiometric quantities (Cu:In:Ga:Se 1:0.5:0.5:2), which were mixed in a Teflon vessel under stirring conditions. The homogeneous solution was treated in a steel autoclave at 300°C for 72 hours at the end of which the resulting material was characterized by X-Ray Diffraction (XRD) and Rietveld refinement. The results of the structural characterization allowed to confirm the obtaining of a chalcopyrite type structure, with a I-42 d (122) structure and cell parameters a=0.570, b=0.570, c=1.140nm, α=90, β=90, γ=90° oriented along (1 0 4) facet, detecting the presence of a secondary phases, related with CuInSe and CuIn metallic selenides, derived from synthesis process. The structural refinement allowing to validate the obtaining of a nanometric crystalline material (10-20nm) for potential applications in field of photovoltaic technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.