Abstract

A simple, low-cost, and environmentally benign hydrothermal approach has been successfully developed to synthesize uniform, large-scale well-crystallized ZnO nanorods with different aspect ratios that were united together to form three dimensional (3D) flowerlike structures. The method involved direct growth of ZnO 3D microstructures using aqueous solution of Zn(CH3COO)2 as the precursor and NaOH to adjust the pH of resultant solution. Surfactants or templates were not used during the entire synthetic process. Moreover, the morphology evolution of the ZnO nanorods with reaction time suggests a recrystallization–dissolution–growth mechanism that continuously takes place for prolonged interval of time. The XRD pattern of the as-grown ZnO nanorods and relevant analyses confirm the well crystallized hexagonal structure of the ZnO microstructures and no evidence of any other impurity phases. SEM observations reveal that the ZnO product grew in the form of nanorods that were united together to form 3D flowerlike morphology. The high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) shows that the ZnO nanorods were single crystalline and grew along the c-axis of the crystal plane. PL measurements of the as-synthesized nanorods exhibit excellent excitation features and strong band-edge UV luminescence even at room temperature. The uniform single crystalline, defect free, and high aspect ratio nanorods may find promising applications in optoelectronics and photo-catalysts. The growth habit of ZnO crystal is also illustrated. This method is suitable for large-scale production of ZnO microstructures and could be extended for syntheses of other metal oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.