Abstract

Abstract In this research work nanoparticles of Mg (0, 1, 2 and 3%) doped MoS2 are prepared by Hydrothermal method at 200 °C for 9 h. Scanning Electron Microscope (SEM) for surface morphology, Fourier Transform Infrared Spectroscopy (FTIR) for structural and chemical bonding and UV-visible spectroscopy for optical properties are used. SEM showed that sheet-like structure has changed into stone-like shaped when Mg has doped into MoS2. From FTIR, Mo–O, Mo=S, and H–O bond peaks are becoming dim and new chemical bonds S=O, Mo=O, Mg–O, CH and OH are forming with the increase of Mg doping. UV-visible spectroscopy showed that MoS2 has an indirect bandgap 2.21 eV. Band gap decreased from 1.84 to 1.82 eV when the Mg doping was increased from 1 to 2%, respectively. As Mg concentration was increased i.e. 3% then band gap increased to 1.88 eV. Photocatalytic activity (PCA) of undoped and Mg doped MoS2 is appraised by degrading rhodamine blue (RhB) and methylene blue (MB) dyes. The results showed that PCA (in presence of visible light) Mg doped MoS2 is greater than pure MoS2 which significantly increased the photocatalytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.