Abstract

Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UV–vis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.