Abstract

Fe2O3 hollow spheres with novel cage-like architectures and porous crystalline shells were successfully fabricated by a controlled hydrothermal precipitation reaction using urea as a precipitating agent and carbonaceous polysaccharide spheres as templates in a mixed solvent of water and ethanol, and then calcined at 500 °C for 4 h. The as-prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption−desorption isotherms, and UV−visible diffuse reflectance spectroscopy. The visible-light photocatalytic activity of the as-prepared samples was evaluated by photocatalytic decolorization of rhodamine B aqueous solution at ambient temperature under visible-light illumination in the presence of H2O2. The results indicated that the diameter, shell thickness, average crystallite size, specific surface areas, pore structures, and photocatalytic activity of Fe2O3 hollow spheres could be easily controlled...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call