Abstract

Hierarchical and well-defined cobalt sulfide with flower-like, cube-like, ball-like, and surface hollowed-out nanostructures were successfully prepared by a facile one-pot hydrothermal synthesis approach, employing Co(NO(3))(2)·6H(2)O as a cobalt precursor and thiourea as a sulfur source. The morphologies of these structures can be easily controlled by simply adjusting the molar ratio of reactants and solvents, reaction time, reaction temperature, and ligand types. Thiourea plays two important roles in the growth process of CoS nanostructures. First, it is decomposed to produce S(2-) for the final formation of CoS. On the other hand, it serves as a structure-directing agent to control the crystalline growth of CoS. The electrochemical capacitance performances of the CoS nanostructures were studied, and the flower-like CoS nanostructures show the best charge-discharge performance among all CoS products with the highest specific capacitance values of 389 F g(-1) at current density of 5 mA cm(-2), and 277 F g(-1) at higher current density of 50 mA cm(-2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.