Abstract

Single-phase silver antimonite have quite low oxidation and reduction potential because of the easy recombination of photogenerated electrons and holes. In the study, a novel ternary graphene@Ag/AgSb2O5.8 (G @Ag/ASO) visible-light-driven photocatalyst was successfully synthesized by a simple hydrothermal method. The morphology, structure, and chemical composition of G @Ag/ASO and its sinters at different temperatures in the air atmosphere were systematically characterized by a range of techniques. Reaction laws of the composites in the sintering process have been revealed based on the Ellingham diagram. The photocatalytic degradation of rhodamine B (RhB) dye and tetracycline hydrochloride (OTC-HCl) by the as-synthesized photocatalyst was investigated under visible light irradiation. The G@Ag/ASO-500 (the sinter at 500°C) exhibits degradation efficiency of 80% for RhB and 85% for OTC-HCl in 120 min, higher than those for AgSb2O5.8 (20% and 24%, respectively). The graphene-enhanced Ag-loaded AgSb2O5.8 model is proposed and reasonably accounts for the high-efficiency electron-hole transfer mechanism through four contact potentials and the crucial role of graphene sheets on the surface of the composites. The present study provides a new perspective for enhancing photocatalytic performance.

Highlights

  • Single-phase silver antimonite have quite low oxidation and reduction potential because of the easy recombination of photogenerated electrons and holes

  • Reaction laws of the composites in the sintering process have been revealed based on the Ellingham diagram. e photocatalytic degradation of rhodamine B (RhB) dye and tetracycline hydrochloride (OTC-HCl) by the as-synthesized photocatalyst was investigated under visible light irradiation. e G@Ag/ASO-500 exhibits degradation efficiency of 80% for RhB and 85% for OTC-HCl in 120 min, higher than those for AgSb2O5.8 (20% and 24%, respectively). e grapheneenhanced Ag-loaded AgSb2O5.8 model is proposed and reasonably accounts for the high-efficiency electron-hole transfer mechanism through four contact potentials and the crucial role of graphene sheets on the surface of the composites. e present study provides a new perspective for enhancing photocatalytic performance

  • Silver antimonite photocatalysis has been developed as a promising “green” photocatalyst with visible light sensitivity in environmental remediation in which the pollutant molecules are converted into nontoxic inorganic molecules by their reaction with both the reactive radicals O2and OH [19, 20]

Read more

Summary

Introduction

Single-phase silver antimonite have quite low oxidation and reduction potential because of the easy recombination of photogenerated electrons and holes. A novel ternary graphene@Ag/AgSb2O5.8 (G @Ag/ASO) visible-light-driven photocatalyst was successfully synthesized by a simple hydrothermal method. E G@Ag/ASO-500 (the sinter at 500°C) exhibits degradation efficiency of 80% for RhB and 85% for OTC-HCl in 120 min, higher than those for AgSb2O5.8 (20% and 24%, respectively).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call