Abstract

In this study, BiPO4:Eu3+ phosphors were synthesized by a facile hydrothermal route at different temperatures. The BiPO4:Eu3+ particles were characterized by x-ray powder diffraction (XRD), infrared spectra, and luminescence spectroscopy. The XRD results reveal that the BiPO4:Eu3+ particles present different phases for different hydrothermal temperatures. It is found that a hexagonal phase is formed at 100°C, which transforms to a low-temperature monoclinic phase (MP) when the hydrothermal temperature is increased to 150°C. This low-temperature MP transforms to high-temperature MP when the temperature is increased beyond 200°C. The luminescent properties of the BiPO4:Eu3+ particles were studied using an excitation wavelength of 270 nm. The emission spectra display the bands associated with the 5D0 → 7FJ (J = 1, 2, 3, and 4) electronic transitions of the Eu3+ cations. The intensity of the emission spectra increases with increasing hydrothermal temperature. These results demonstrate that BiPO4:Eu3+ with different phases can be obtained through the hydrothermal method, which may enrich the solution chemistry for preparation of advanced materials with tailored functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.