Abstract

The selenites, Na2Be3(SeO3)4·H2O and Cs2[Mg(H2O)6]3(SeO3)4, were synthesized under hydrothermal conditions. The crystal structures of Na2Be3(SeO3)4·H2O and Cs2[Mg(H2O)6]3(SeO3)4 were determined by single‐crystal X‐ray diffractions. Na2Be3(SeO3)4·H2O crystallizes in the triclinic space group P1 (no. 2) with unit cell parameters a = 4.8493(9), b = 12.013(2), c = 12.077(2) Å, and Z = 2, whereas Cs2[Mg(H2O)6]3(SeO3)4 crystallizes in the monoclinic space group C2/m (no. 12) with lattice cell parameters a = 12.596(6), b = 7.297(4), c = 16.914(8) Å, and Z = 2. Na2Be3(SeO3)4·H2O features a three‐dimensional open framework structure formed by BeO4 tetrahedra and SeO3 trigonal pyramids. Na cations and H2O molecules are located in different tunnels. Cs2[Mg(H2O)6]3(SeO3)4 has a structure composed of isolated [Mg(H2O)6] octahedra and SeO3 trigonal pyramids interacted by hydrogen bonds, and Cs cations are resided in‐between. Both compounds were characterized by thermogravimetric analysis and FT‐IR spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call